lunes, 1 de diciembre de 2014

Resolución de máximos y mínimos

1. Hallamos la derivada primera y calculamos sus raíces.

f'(x) = 3x^2 − 3 = 0

x = −1 x = 1.

2. Realizamos la 2ª derivada, y calculamos el signo que toman en ella los ceros de derivada primera y si:

f''(x) > 0 Tenemos un mínimo.

f''(x) < 0 Tenemos un máximo.

f''(x) = 6x

f''(−1) = −6 Máximo

f'' (1) = 6 Mínimo

3. Calculamos la imagen (en la función) de los extremos relativos.

f(−1) = (−1)^3 − 3(−1) + 2 = 4

f(1) = (1)3 − 3(1) + 2 = 0

Máximo(−1, 4) Mínimo(1, 0)



Fuentes:
http://www.dervor.com/derivadas/maximos_mimimos.html

No hay comentarios.:

Publicar un comentario